首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   723篇
  免费   26篇
  国内免费   65篇
  2023年   4篇
  2022年   5篇
  2021年   8篇
  2020年   5篇
  2019年   14篇
  2018年   11篇
  2017年   15篇
  2016年   28篇
  2015年   19篇
  2014年   25篇
  2013年   31篇
  2012年   19篇
  2011年   15篇
  2010年   21篇
  2009年   52篇
  2008年   48篇
  2007年   57篇
  2006年   46篇
  2005年   42篇
  2004年   40篇
  2003年   28篇
  2002年   20篇
  2001年   17篇
  2000年   23篇
  1999年   16篇
  1998年   12篇
  1997年   11篇
  1996年   14篇
  1995年   14篇
  1994年   14篇
  1993年   15篇
  1992年   19篇
  1991年   15篇
  1990年   11篇
  1989年   9篇
  1988年   8篇
  1987年   14篇
  1986年   9篇
  1985年   8篇
  1984年   3篇
  1983年   2篇
  1982年   3篇
  1981年   4篇
  1980年   8篇
  1979年   1篇
  1978年   1篇
  1976年   5篇
  1974年   2篇
  1973年   2篇
  1972年   1篇
排序方式: 共有814条查询结果,搜索用时 31 毫秒
1.
Macroinvertebrate communities have been widely used as a tool for assessing the environmental quality of freshwater ecosystems, whereas zooplankton communities have been to some extent neglected. However, the importance of using different indicators to achieve a more comprehensive framework of assessment regarding water quality has been recognized. This study compared estimates of species richness (number of species) and the Shannon–Wiener index for data on macroinvertebrate and zooplankton communities in tropical reservoirs and related them to their trophic state. The trop+hic classification was obtained by applying the Carlson index (1977) modified by Toledo et al. (1983), and the index of the Brazilian Society of the Environmental Technology Agency. The comparative response of the different indicators was analyzed using a series of bivariate correlations (Draftsman’s plot). The results illustrate that diversity measures, namely species richness, responded differently when related to the trophic classification of reservoirs, depending on the community considered. The species richness of zooplankton was positively related to hypereutrophic conditions, due to the higher number of rotifer species, including tolerant generalist species and at the same time, as a result of the exclusion of species from other groups, whereas for macroinvertebrates, species richness was negatively related to hypereutrophic conditions. Melanoides tuberculatus, which exhibits a high tolerance and competitive ability under such conditions, was the dominant species in macroinvertebrate communities, which excluded endemic species and reduced local richness and diversity. The same indicators applied to the zooplankton and macroinvertebrate communities might therefore provide contradictory responses regarding ecological quality assessment in tropical reservoirs, which suggest that zooplankton should be taken into account among the biological quality elements considered in the ecological quality assessment, management, and restoration of water bodies.  相似文献   
2.
Due to the intensive mixing polymictic lakes should be homogenous. However, morphometric diversity and high water dynamics contribute to the differentiation of many parameters in various areas of the lakes. This study analyzes both phytoplankton and zooplankton to assess differences in water quality along the north–south axis of the longest lake in Poland. New phytoplankton indicators were applied for determining the lake's ecological status: the Q index based on functional groups and the PMPL (Phytoplankton Metric for Polish Lakes) index based on phytoplankton biomass. TSIROT index (Rotifer Trophic State Index), which comprises the percentage of species indicating a high trophic state in the indicatory group and the percentage of bacteriovorus in the Rotifera population, was used for zooplankton analysis.TP content was different at different sites – we observed its gradual increase from the south to the north. Spatial variation of phosphorus did not considerably affect plankton diversity. The phytoplankton was dominated by Oscillatoriales, typical of shallow, well-mixed eutrophic lakes. The ecological status of the lake based on the EQR (Ecological Quality Ratio) was poor or moderate. The zooplankton was dominated by rotifers (at almost all sites), which indicates a eutrophic state of the lake. The values of phytoplankton indices at the studied sites did not differ considerably; the differences resulted more from local conditions such as the contaminant inflow and the macrophyte development than water dynamics.We have demonstrated that in the lake dominated by filamentous Cyanobacteria the ecological status should be determined according to the PMPL index or other indices dependent on the dominant Cyanobacteria species. Since the Q index does not include the functional group S1, the results can lead to the false conclusion that water quality improves with an increased amount of phytoplankton. The high abundance of Cyanobacteria in the lake may have contributed to the poor growth of rotifers.  相似文献   
3.
Eutrophication is a major problem in coastal water bodies. Information about the trophic status of water bodies will enable proper management of coastal ecosystems. In this regard, biological organisms which are sensitive to environmental changes can serve as indicators of ecosystem trophic status. In this study, seasonal and spatial variations of picophytoplankton (PP; <3 μm size) community structure was assessed in the Cochin backwaters (CB) with respect to the prevailing environmental conditions during three seasons, post-monsoon (PM-I; October 2011 and PM-II; November 2012), pre-monsoon (PrM; May 2012) and monsoon (MON; August 2012). CB, along the west coast of India, receives continuous load of nutrients throughout the year through anthropogenic wastes. Trophic status index (TRIX) scores showed that CB is highly eutrophic with a high phytoplankton biomass. Synechococcus was the dominant PP observed in the study area. Seasonal and spatial salinity variations influenced the PP distribution, especially Synechococcus where PE-rich Synechococcus (SYN-PE) were dominant in higher saline (>30) and PC-rich Synechococcus (SYN-PC) in lower saline (<30) waters. SYN-PC showed a significant positive relation with chlorophyll a suggesting that this group contributes substantially to the total phytoplankton biomass. TRIX scores and SYN-PC: SYN-PE abundance ratio were negatively correlated with salinity suggesting an influence of the tidal amplitude. SYN-PC correlated positively and SYN-PE negatively with TRIX scores suggesting that these groups occupy contrasting ecological niches. These findings imply that PP distribution pattern can serve as an indicator of the trophic status of coastal water bodies.  相似文献   
4.
The phytoplankton community of the Belarus Lakes Naroch, Myastro and Batorino, which have a Trophic State Index of 42.3, 60.7 and 66.8, respectively, underwent drastic changes to their structure during the period between 1968 and 2012. Thanks to an extensive monitoring program, these changes were well-documented and were qualitatively interpreted as signs of the community destabilization. The main objective of this study was the quantification of the ecological stability of the phytoplankton community in the Naroch Lakes. The approach to the quantification of ecological stability was based on defining the stability index as an inverse of the Euclidean Distance between the current and the reference states of the algal community (EuD-approach). The stability of the phytoplankton community was characterized by two indices: a “combined” index (SI[Comb]), and a “total community” index (SI[TotB]). SI[Comb] was calculated based on the individual taxonomic group biomasses and thus characterizes the stability of a community structure. SI[TotB] was calculated based on the values of the total algal biomass. Analyses of the results of this study extended the plausibility of the EuD-approach for the quantification of lake phytoplankton stability and allowed us to identify the dynamics of the stability of the Naroch Lakes phytoplankton. For the Naroch Lakes, we observed relatively larger SI[TotB] values in comparison with the SI[Comb] values. The results enabled us to examine the relationship between the lake trophic status and the stability of the phytoplankton community.  相似文献   
5.
The temporal variation of stoichiometry between consumed oxygen and oxidized carbon was investigated for the aerobic mineralization of leachates from aquatic macrophytes. Seven species of aquatic plants, viz. Cabomba piauhyensis, Cyperus giganteus, Egeria najas, Eichhornia azurea, Salvinia auriculata, Scirpus cubensisand Utricularia breviscapa, were collected from Òleo lagoon located in the floodplain of Mogi-Guacu river (São Paulo State, Brazil). After being collected, the plants were washed, oven-dried and triturated. In order to obtain the leachate, the fragments were submitted to an aqueous extraction (cold). Mineralization chambers were incubated at 20 °C containing leachates dissolved in water samples from Òleo lagoon to a final concentration of ca. 200 mg l–1on carbon basis. The chambers were maintained under aerobic conditions; the concentrations of the organic carbon (particulate and dissolved) and the dissolved oxygen were measured during approximately 80 days. Elemental analysis of the detritus and the concentrations of the remaining material (DOC and POC) were used to determine the amounts of mineralized organic carbon. The data were analyzed with first-order kinetics models, from which the daily rates of consumption (carbon and oxygen) and the stoichiometry (O/C) were determined. In the early phase of mineralization the O/C rates increased before reaching a maximum, after which they tended to decrease. For the mineralization of leachates from C. giganteus, S. auriculata and U. breviscapa, the decrease was relatively slow. For all substrata the initial values were smaller than 1, and ranged from 0.42 (S. cubensis) to 0.81 (C. piauhyensis). The maximum values were within the range from 0.58 (U. breviscapa) to 23.1 (E. najas) and at their highest 26th (C. piauhyensis) and 106th (C. giganteus) days. These variations are believed to be associated with the chemical composition of the leachates, with their transformations and alterations of metabolic pathways involved in the mineralization.  相似文献   
6.
A study was conducted in the spring of 2009, the winters of 2010 and 2013, and in the summer of 2012 at 13 stations in Boughrara Lagoon, Tunisia (southern Mediterranean). The country⿿s largest lagoon, it is considered to be an anthropogenically stressed area, though a major tourist centre⿿Djerba Island⿿is located along its northern shores. The lagoon bottoms were studied via analyses of grain size, surface sediment composition, total organic matter (TOM) and through the trophic and functional organisation of benthic macrofauna. The results indicate that the bottoms are composed of fine, medium or coarse sands and that sediment distribution is controlled by water movement. Estimation of TOM content revealed that the studied samples present both normal and imbalanced sediments. The structure and organisation of the lagoon⿿s benthic macrofauna are dominated by select deposit feeders and underwent significant changes during the period 2010⿿2013.Subjected for decades to increased pollution due to growing human activities in the surrounding area, Boughrara Lagoon now appears to be impacted by certain environmental/anthropogenic stressors, as indicated by the presence of pollution-tolerant bio-indicator species in the imbalanced area. The response of the lagoon ecosystem to changes in benthic sediment deposition provides a potential assessment tool for similar habitats elsewhere.  相似文献   
7.
Climate change is expected to alter the dynamics of infectious diseases around the globe. Predictive models remain elusive due to the complexity of host–parasite systems and insufficient data describing how environmental conditions affect various system components. Here, we link host–macroparasite models with the Metabolic Theory of Ecology, providing a mechanistic framework that allows integrating multiple nonlinear environmental effects to estimate parasite fitness under novel conditions. The models allow determining the fundamental thermal niche of a parasite, and thus, whether climate change leads to range contraction or may permit a range expansion. Applying the models to seasonal environments, and using an arctic nematode with an endotherm host for illustration, we show that climate warming can split a continuous spring‐to‐fall transmission season into two separate transmission seasons with altered timings. Although the models are strategic and most suitable to evaluate broad‐scale patterns of climate change impacts, close correspondence between model predictions and empirical data indicates model applicability also at the species level. As the application of Metabolic Theory considerably aids the a priori estimation of model parameters, even in data‐sparse systems, we suggest that the presented approach could provide a framework for understanding and predicting climatic impacts for many host–parasite systems worldwide.  相似文献   
8.
P. Manolaki 《Plant biosystems》2013,147(4):1064-1077
Abstract

In Greece, as in many other Mediterranean countries, there is a lack of information enabling the use of aquatic macrophytes as biological indicators of the water trophic status. This research aimed to investigate the trophic preferences of the aquatic macrophyte assemblages encountered in selected standing water bodies of a lowland river basin of western Greece. It also aimed to assess the response of the macrophyte species that occur in the studied water bodies to different nutrient concentrations. A total of 56 macrophyte species were identified. TWINSPAN analysis distinguished four main vegetation groups potentially related to three trophic types. The Trophic Ranking Score developed in the UK was applied in order to investigate the trend in aquatic macrophytes in response to the different trophic conditions. The results indicated that TRSUK was not in accordance to the water trophic indices. After the addition of 14 new species and the re-scoring of the plants from the UK list, the re-calculation of TRS enabled a better classification of the trophic status convergent with the information from the water trophic indices. The current study constitutes a reference document providing basic information, and must be improved by updating the plant list with new data from other sites.  相似文献   
9.
This study investigates ciguatoxin dynamics in mullet after controlled feeding of Gambierdiscus polynesiensis cells as a model to characterize the absorption, distribution, retention and accumulation of ciguatoxins into the second trophic level of southwestern Pacific coral reef ecosystems. Mullet (Mugil cephalus) were fed once every other day over a period of 16 days for nine toxic feedings, and ciguatoxin activity was assessed over time in blood and seven tissues using the Neuro2a assay. Within 3 h of feeding on G. polynesiensis cells, ciguatoxins attained maximal blood concentrations, indicating rapid absorption of toxins into the systemic circulation. The time course for distribution of the estimated total tissue burden of ciguatoxin closely followed the time course for blood toxin levels, indicating a rapid distribution of the ciguatoxins throughout the fish body. The large majority (95%) of the ciguatoxin ingested dose was eliminated from the examined fish tissues 24 h after a single toxic meal, indicating little retention potential for ciguatoxin. We found no evidence for ciguatoxin accumulation after nine repeated feedings spaced two days apart, indicating that mullet did not accumulate ciguatoxin. These results provide the first experimental evidence supporting the central tenet of Randall's food chain hypothesis that ciguatoxins enter the food chain by transfer from unicellular algae to herbivorous and detritus-feeding fish. We propose that a time-dependent transformation of oxopene ciguatoxins may be necessary for the concentration of ciguatoxin through higher trophic levels.  相似文献   
10.
To clarify the feeding habits of fishes in surf zones, the gut contents of 19 fish species collected in the surf zone of a sandy beach at Sanrimatsubara, western Japan, were examined. Ontogenetic changes in food preference were recognized in seven species (Mugil cephalus cephalus, Lateolabrax latus, Sillago japonica, Paralichthys olivaceus, Paraplagusia japonica, Takifugu poecilonotus, and Takifugu niphobles). A cluster analysis based on dietary overlaps showed that the surf zone fish assemblage comprised six trophic groups (zooplankton, benthic and epiphytic crustacean, detritus, polychaete, fish, and insect feeders). Of these, the most abundant trophic group was zooplankton feeders, along with benthic and epiphytic crustacean feeders.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号